
UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS AGET

IMENTATION PAGE "fw00?

'V AD-A220 498 lb. RESTRICTIVE MARKINGS

a* 3. DISTRIBUTION / AVAILABILITY OF REPORT

ECLASSIFICATION /ONRDGSCEUEDISTRIBUTION STATEIENT A- Approved for
DWNRAIN SCHDUL public release; distribution is unlivoited

4. PIERF0RMIN~ ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
SM-ALC/SCD-1 HIQ AFLCh/iDAs

1 6a. NAME OF PERFORMING ORGANIZATION -16b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Sacramento Air Logistics S M Afe S'C~tN Wright -Pat terson AFB, OH 45433-50

C-enterHQ AFLC/HHDAS
6C. ADDRESS 'City, State, and IPCode) 7b. ADDRESS (City, State. and Z!P Code)SM-ALC/SCDN, McClellan,,AF Base, Wright-Patterson AFB, OH 45433-5000

CA 95652-5990

So. NAME OF FUNDINGJISPONSORING j8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERORGANIZATION (if applicable)

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM * PROJECT ITASK IWORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Clasification)
OOPS IT'S HAPPENING

12. PERSONAL AUTHOR(S)

FaaineL GRU URUArtif ia IIFtelli Agene Comutrs Aplia6 o

on ~~~ ~ ~ Object OrientedPrgamn Programmingans

Smailtalk (See reverse)
19. ABSTRACT (Continue on r'everse if necesy and identify by block number)Since the introduction of computers, programmers have been searching forhigher level languages which support a philosophy of quick and easy
application development and maintenance. In 1977, Xerox developed the
first object oriented language, Smalltalk. This paper describes the
uses and benefits Of object oriented programming for the novice.

DTICS ELECTED

I20. DISTRISIJTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
C3UNCLASSIFIED/UNLIMITED 13 AME AS RPT. E3 DTIC USERS UNCLASSIFIED

Z2&. NAME OF ~RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code)T22c. OFFICE SYMBOLRoger Il. Boan t(513) 257-3201)HQ AFLC/XPS

DForm 1473. JUN 86 Previous editions are obsolete. -SECURITY CLASSIFICATION OF THIS PAGE

90 04 1 o 021

18. Tools, Compuer Programs , Computer Programing.
Computer Programs

Programing. Languages , Computer Applications

/
(

LEAD IN FOR THE ARTICLE

INTERESTED IN OOPS? WHAT IS OOPS? THIS TWO PART ARTICLE
DISCUSSES THE OBJECT ORIENTED CRAZE THAT IS FOUND ALL OVER

THE COMPUTER INDUSTRY AND GETS YOU INTO THE BUSINESS OF
UNDERSTANDING THE LATEST OOPS TERMS!

rL/

Accesior For -

NTIS CRA&I
DTIC TAB 0

Unannojuced D
Ju~tfcaloq

By
DiStibuton /

Availability Codes

Dist Avai 3rnd I or

4ecoai

QOF'S IT'S HAPF'PENING'

Ely

Mel Fisher

Object Oriented Programming Systems (00PS) Fzrt 1

(This is the first part of an article on OOPS)

The Software Crisis!

Since the introduction of computers, programmers have been

searching for higher level languages which support R

philosophy of quick and easy application development and

maintenance. Problems in the 50's and 60's resulted in

extensions being added to computer languages to make them

more modular, thus reducing the problems of having

different parts of a program conflict with each other.

This module or block of code required protection from

other things happening within the program and introduced

the concept of an OBJECT and how to protect (encapsulate)

data used by that object.

One of the first object oriented languages was Smalltalk,

develoced at Xerox PARC in 1977 by Alan Kay. it was a

tremendous success at influencing the direction of many

commercial products like Apple's Lisa and Macintosh.

Similar to the Macintosh, the Smalltalk system is not just

a language; it's an integrated programming environment.

An object oriented programming (0OF) environment like

Smalltalk is based on a single universal data structure

(the object), a control structure for sending messages,

and a uniform class description (the class hierarchy).K

These terms will make more sense as we talk about them in

part I1 of this article. For now we just need to know that

they are important.

What good are all these Objects-

The initial appeal of object orientation ,! iht it

provides not so much a codino technique as :t . new

approach to make software (1) better desioned, (2 -re

reusable, and (7) more reliable.

1) BETTER DESIGNED - 00P provides better concepts -rc

tools to model and represent real world proble.ms Lv

allowing an easier transformation from orobiem oef;rton

to system requirements (user te-ms;, and programmino

language (computer terms). This transformation frog,

problem to computer specification is o4ten called

information modeling, where any real world object ctn be

represented in a variety of ways. For e::ample, we can

represent an abstract object (doa) by the table showr

below:

DOG

:Dogs Breed Favorite Birthdate

name food

,Fifi Poodle Dry May2 82

:Rover Mix Mi x June 1 87

A column in the table represents a characteristic or

ATTRIBUTE of the object dog. Each unique dog represents a

particular instance o-f the object dog by a row in the

table. Other objects of our real world problem could be:

Dog Owner Vet Doctor

Owner Address Doctor Address:

The last thing we need to know is that these objects can

have relationships and communicate, the owner's name Lan

be associated with the name of a dog. In our case the dog

is owned by a owner and can be serviced by a vet doctor.

We can begin to create an information model of our problem

using these basic concepts to create OBJECTS with

ATTRIBUTES which can communicate with other objects.

through MESSAGES.

2) MORE REUSABLE - Since OOF deals with objects and the

data that works with those objects, this packaging of

objects (encapsulation) allows for the development of

object libraries which can be used when developing

applications. These software libraries contain reusable

objects (data & methods) that can be incorporated into any

program by more that, one programmer.

3) MORE RELIABLE - The b i qest pr ob Iemf E-;

designing systems involves an at ti1tude'C C trc. r , rc. 7

application (end User) need-- chanae. tie ~~

to make those chince5 in software i ~cit ,&r' eC.4 C',

programming tool: , methodol ogi e- and "!-,u~

naturatl pr-ocess Of Usinrg better uies-iored _cic-d wi tr

reUsabi e software modules will reTu" t rf': em

adjust to change better and be rycr ere2 e.

So What is Object Oriented G-r-oar,!Mfr~n-'

It is a way for real world problems to be reoreL-ented is

objects, with properties (attributes) abou.t those D bjects

and the operations (messaaes) permi' .ted to wori on otbiect

data structures. In an QOF' enivi ronment,. a croorar. cbt,: i nE

information irom an objiect or request Z-n Object to do

something by sending a ri1ESSA;3E to --he object. Some'T

r~b jects in any probl em will be very imi±a and thus

demonstrate a similar behavior. The obje--t dog above is

similar to a Deer. It has fO~lr leas, a head, tail, etc..

when creatinq the oriainal object dog it would of made

sense to Use similar characteristics of the deer object or

inherit its characteristics and not reinvent the wheel.

TRANSITION TO OOPS!

The Lronsition to OOP will not necessarily be a smooth

one. There probably will be several phases to go through

before programmers can really incorporate OOP into the

mainstream of programming.

The first phase of the OOP transition will be to integrate

into existing languages OOP features. This incremental

process will allow programmers to build on their existing

knowledge and experiences and use existing code, incre-

mentally using objects in places where they are 'eeded.

This would include languages like C++, Objective C and

Object Pascal. Borland and Microsoft recently have

announced their versions of Object Pascal while Apple has

had Object Pascal for years. Will OOP features be added

to other traditional languages (OOP-COBOL) ?

The second phase is to have major application use objects

as collections of objects. With this capability, appli-

cations can use objects such as a spreadsheet, text or

graphics independent of where they were created. These

toolkits are just now becoming available for the

programmers in the form of Dynamic Link Libraries. At

this point, operating systems will have to recognize these

collections of objects. Operating systems like 0S-2 and

Unix offer this in some capacity rioht now, but it needs

to be improved before OOPS makes it to the last phase.

F

The final or third phasz of OOF' transition will be tool

development for ernd-USerS. Programmi ng tools~ or I ar.ouOL&eS

like Smraltal-kk or A~ctor rprovide this now to a ~rar

dpcgree, but sotme manual coding is still reqUi rcd.

Hope-fuklly, tools like this will re-sult in end-usters

creatingp applications with object oriented code

qenerators.

OOF' SOURCES

1. Journal of: Object-Oriented Proaramming. ±e' ~~~1

2.C++ Report, 1-800-345-6112.

MacTutor Rr-oqrammi na Journal . (714) 6-.'~

4. Farc'l ace * Small tal k-&8I 1 -f~ff'-622-STENI.

5. The Whitewater Group, Actor, (.12) 491-2770.

6. Diai-tlk. mltl/ (PC/Mac) l-800-5,22-625"J.

7. Yourdon Press, Object-Oriented Systems Anal-vsis b,.

Sally Shlaer and Stephen Miellor.

B. Addison-~Wesley, Object Orientezd Froora mmang b- Prad

Co. x.

A. ddison-Wesley, "A Little Smalltalk", by Timothy Butdd.

RkE E RE NCES

1.YOUr-don Pres- 'D7b)ect-Oirent-d S',-t~ciF Arn a Iy -i. t-y

Sallvy Shlaer and EOtephen Mellor, .

2.Addason-Wes,1ev, "Object Orient.?d Proarriuino" by E'rad

Co,:, April 1987.

~- FC Le~ "OOP: New. Fer-soecti ye on Coc anrd Data" .b,

Jei+ery DUntem.ann. N,-veiver 14. lc 8E..

4. InioWorld, "lransiti -n to Occur in three 'Wves" . t-,.

Stua~rt J. Johnson. July 7., 198S9.

5. M n~ement informsti o- Systems Week, "OOP: more

smarts, less code", by David COUrsey, June 12. 1921P

6. John Wilev & Sons, "intelliaent Databases", by K::nrra

Parsaye. Mark Chi 9nell1 Setraq Khosha-fian * and Harry

Worng, 1989.

OOFS iT'S HA PPENING!

Mel Fisner

Object Oriented Programming Systems (OOPS) Part Ii

(This is part II of a series of articles on OOPS)

/

Remember OOF'S-

In part I o4 this article we dISCuISsed trie sc4 tiwjre crisis

i n desi an ing sys tems wi th tr ad it iona I anrQU60E-E af hlv

Object Oriented Prog~ramming (OOP) 4-VOu~d pro,,vioe ane

approach +or software to be (1) better des :qned. f2, more

rPUSable and (7) more reliz~bE-.

We also tal l. d about how OOP provi des a better wvto

repreent real world problems as CE JECTS with properties

(ATTRIBU!TES) and how objects can communic-ate with, other

objects by passi ng MESSAGES.

OP: New wiays to Look At Code F, Data

Novi th.At we know aboutt objects, attribUtes, and mnessaoes.

it is time to add a few more terms to our OOP vozabular-Y.

Under the OOF paradigm, both code and data are imoortzznt

as they are brought tooether to form an object. Since

objects perform actions via methods (procedures), one

method might print the object's data on a printer (ie. ao

print yoLrsel-F). Another method might reQutest%- new data +or

its object which could be a database record object.

This idea of sending messages to objects is intriguing but

only part of the story. The most important part o+ OFP is

the idea of INHERITANCE. When an object is defined. it

becomes part of a CLASS of object. In our dog cbject

example in part I, we saw that a dog could have

characteristics of a aeneric anima! object. This process

is called inheritance. What this means is that any object

can inherit the needed characteristics of any other object

and then just add thbe attributes it needs for itseUl.

Let me state that again because it is the most important

part of OOF that makes it dramatically different irom inv

procedural language. The actual inheritance ocCurs when a

new class of object is defined by building upon

previously defined class.

For example: if we create a new object dog, it most

likely will have some characteristics of a generic animal

object. Since certain animals have four leas, a tail, a

head and other features, we can Use or inherit these

characteristics for our animal object. To make the dog

look different, we will add some o; our own methods

(procedures) to the object to make it unique and behave

like a dog.

The last thino to know is that the class of objects is

structured in a HIERARCHY. When a new class of an object

is created it is considered a descendant of the original

class which in turn, is an ancestor to the new class just

created. It's similar to a family tree of objects.

Classes higher in the hierarchy tree represent more

general characteristics, while classes lower in the

hierarchy, represent more specific characteristics common

to object classes. For example: the class animal in a

hierarchy tree would contain more general characteristics

that a dog object which is a certain type of animal.

A Model For Reality

As mentioned earlier in Part I, the appeal of OOP is that

it provides better concepts and tools to model and

represent the real world. This allows for a more direct

representation of data and modeling of data to the problem

at hand.

This process of trying to represent the real world in

computer/user terms is called information modeling.

Information modeling itself can be very useful in many

application areas where there is a need to have systematic

processes clarified.

For example, consider a procurement expert within a

company. This person has a great deal of knowledge on the

inner working of how to get items purchased from various

vendors. Information modeling would be helpful here to

extract from the procurement specialist, the processes

I.

which make up his/her approach to procurement problems.

OOP allows you to represent a model of the procurement

problem and the relationships within the problem to assist

in the transition from problem definition to computer

speci f i cations.

One of the first things you do when building an

information model is to define the conceptual units of the

problem itself in the form of objects. The combination of

all these objects assists in defining the problems scope.

Why is this model important? It represents one of the

processes that make up the complete software development

lifecycle. This developmental process is typically made

up of four phases with a. varying degree of each:

1. Analysis of the problem (our model above)

2. Specifications

3. System design

4. Implementation

Future Directions of OOF?

There are several areas where QOF can be applied;

databases, end-user tools, CASE (Computer Aided Software

Engineering), and tooliits for programmers. Since the

database is the most important part of any information

system, bhis area will benefit the most from incorporating

OOF.

A database combined with OOF becomes an intelligent

database. To fully utilize intelligent databases,

other tools can be added such as expert systems,

hypermedia and text management. New information

technologies combined with graphics will play an ever-

increasing role in information systems of the future.

OOP will not be a cure all for tfuture system design, but

it will help reduce the software crisis of today by

facilitating software design and maintenance.

I.

Mel Fisher is a Knowledge Engineer in the Artificial Intelligence
Laboratory (AI Lab) at McClellan AFB, Sacramento, California. He has an A.S.
degree in Electronics Technology and a B.S. degree in Instructional
Media Technology from California State University, Chico. Prior to joining
the AI Lab, most of his experience was in the Aerospace Industry with Lockheed
and Martin Marietta. His interests include database systems, object
oriented programming, and expert systems.

